An Introduction to Open vSwitch Netfilter Workshop, Seville, Spain

Simon Horman <simon@horms.net> Horms Solutions Ltd., Tokyo

October 2010

- Flexibility for Networking in Virtualised Environments
- Flexible Controller in User-Space
- Fast Datapath in Kernel

- Available from openvswitch.org
- Development code is available in git
- Announce, discussion and development mailing lists
- User-space (controller and tools) is under the Apache license
- Kernel (datapath) is under the GPLv2
- Shared headers are dual-licensed

- A switch contains ports
- A port may have one or more interfaces
 - Bonding allows more than once interface per port
- Packets are forward by flow

A flow may be identified by any combination of

- Input port
- VLAN ID (802.1Q)
- Ethernet Source MAC address
- Ethernet Destination MAC address
- IP Source MAC address
- IP Destination MAC address
- TCP/UDP/... Source Port
- TCP/UDP/... Destination Port

Packets are Managed as Flows

- 1 The first packet of a flow is sent to the controller
- 2 The controller programs the datapath's actions for a flow
 - Usually one, but may be a list
 - Actions include:
 - Forward to a port or ports, mirror
 - Encapsulate and forward to controller
 - Drop
- 3 And returns the packet to the datapath
- 4 Subsequent packets are handled directly by the datapath

- Migration
- VLANs
- QoS
- Management

- KVM and Xen provide Live Migration
- With bridging, IP address migration must occur with in the same L2 network
- Open vSwitch avoids this problem using GRE tunnels

- Per-Customer VLANs are desirable for security reasons
- But there is a limit of 4094 VLANs

Two, apparently competing, approaches

- 1 IETF / Cisco
 - RFC5517 Private VLANs
- 2 IEEE
 - 802.1ad Provider Bridges (Q-in-Q)
 - 802.1ah Provider Backbone Brides (MAC-in-MAC)

- Uses existing 802.1Q framing
 - Simple to implement (in software/firmware)
- Makes use of pairs of VIDs
 - Requires all switches to support of Private VLANs otherwise switch tables may not merge
- Provides L2 broadcast isolation
 - Forwarding may occur at L3
 - Requires the router to perform proxy ARP
- Currently not supported by Open vSwitch

Three VLAN classifications

- Promiscuous
 - May communicate with endpoints on any port
 - e.g.: Gateway, Management Host
- Community
 - May only communicate with endpoints on promiscuous ports or ports belonging to the same comunity
 - e.g.: Different hosts belonging to the same customer
- Isolated
 - May only communicate with endpoints on promiscuous ports
 - e.g.: Hosts that only require access to the gateway

Private VLANs — Domain View

- Promiscous domain (P)
 - May communicate with endpoints in the same domain and sub-domains
- Two community sub-domains (C_1, C_2)
 - May communicate with endpoints in the same domain and parent-domain
- Isolated sub-domain (I)
 - May communicate with endpoints in the parent domain
 - May not communicate with endpoints in the same domain

802.1ad — Provider Bridges (Q-in-Q)

- Current standard is 802.1ad-2005, Approved December 2005
- Builds on 802.1Q
- New Framing
 - C-VID (inner)
 - Renamed 802.1Q VID
 - There may be more than one C-VID (inner-inner, ...)
 - S-VID (outer)
 - Different ether-type to C-VID
 - May be translated
- Currently not supported by Linux Kernel / Open vSwitch

802.1ad Framing — Provider Bridges

DA	Destination MAC address
SA	Source MAC addresss
S-VID	Service VLAN ID
C-VID	Customer VLAN ID
VID	VLAN ID

802.1ah — Provider Backbone Bridges (MAC-in-MAC)

- Current standard is 802.1ah-2008, Approved August 2008
- Builds on 802.1ad
- New Framing
 - MAC encapsulation provides full Client VLAN isolation
 - Inner MAC is unknown outside of its scope
 - I-SID: Up to $2^{24} \approx 16$ million backbone services
 - I-VID semantics are the same as the S-VLAN
 - Only edge switches need to be Provider Backbone Bridge aware
 - Core switches need only be Provider Bridge (802.1ad) aware
- Currently not supported by Linux Kernel / Open vSwitch

802.1ah Framing — Provider Backbone Bridges

B-DA	Backbone Destination MAC address	
B-SA	Backbone Source MAC address	
B-VID	Backbone VLAN ID	
I-SID	Service ID	
DA	Destination MAC address	
SA	Source MAC addresss	
S-VID	Service VLAN ID	B-DA
C-VID	Customer VLAN ID	B-SA
VID	VLAN ID	B-VID

Open vSwitch QoS capabilities

- 1 Interface rate limiting
- Port QoS policy

- A rate and burst can be assigned to an Interface
- Conceptually similar to Xen's netback credit scheduler
- # ovs-vsctl set Interface tap0 ingress_policing_rate=100000
 # ovs-vsctl set Interface tap0 ingress_policing_burst=10000
 - Simple
 - Appears to work as expected

QoS: No interface rate limiting example

```
# netperf -4 -t UDP_STREAM -H 172.17.50.253 -- -m 8972
UDP UNIDIRECTIONAL SEND TEST from 0.0.0.0 (0.0.0.0) port 0 AF.
to
```

```
+172.17.50.253 (172.17.50.253) port 0 AF_INET
```

Socket	Message	Elapsed	Messages	5	
Size	Size	Time	Okay Eri	ors	Throughput
bytes	bytes	secs	#	#	10^6bits/sec
120832	8972	10.01	146797	0	1052.60
109568		10.01	146620		1051.33

- tap networking used
- jumbo frames required to reach line speed (≈210Mbits/s with 1500 byte frames)
- virtio should do better?

netperf -4 -t UDP_STREAM -H 172.17.50.253 UDP UNIDIRECTIONAL SEND TEST from 0.0.0.0 (0.0.0.0) port 0 AF. to 172.17.50.253 (172.17.50.253) port 0 AF_INET Socket Message Elapsed Messages Size Size Time Okay Errors Throughput bytes bytes secs # # 10⁶bits/sec 120832 8972 10.01 149735 0 1073.66 109568 10.01 14684 105.29

- Difference in sent and received packets indicates a flow control problem.
- virtio should do better?

- A port may be assigned one ore more QoS policy
- Each QoS policy consists of a class and a qdisc
 - Classes and qdisc use the Linux kernel's tc implementation
 - Only HTB classes are supported at this time
 - Each class has a single qdisc associated with it
 - The class of a flow is chosen by the controller

The QoS policy (i.e. class) of a flow is chosen by the controller

Programming the Datapath

1:# ovs-vsctl set port eth1 qos=@newqos \ 2: -- -- id=@newgos create gos type=linux-htb \ other-config:max-rate=200000000 queues=0=@q0,1=@q1 \ 3: 4: -- -- id=@q0 create queue \setminus 5: other-config:min-rate=100000000 \ other-config:max-rate=100000000 \ 6: 7: -- -- id=0q1 create queue \setminus 8: other-config:min-rate=50000000 \ 9: other-config:max-rate=50000000

Hard-coding the controller

- # ovs-ofctl add-flow br0 "in_port=2 ip nw_dst=172.17.50.253 \
 idle_timeout=0 actions=enqueue:1:0"

Only suitable for testing

Guest 0:

```
# netperf -4 -t TCP_STREAM -H 172.17.50.253 -1 30 -- -m 8972
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
172.17.50.253 (172.17.50.253) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 8972 30.01 99.12
```

Guest 1:

netperf -4 -t TCP_STREAM -H 172.17.50.253 -1 30 -- -m 8972 ... 87380 16384 8972 30.14 49.56

- Add a default queue to the Port table
- Add enqueue to the FLOOD and NORMAL ports
- or use NOX (a different controller)

- Open vSwitch is aimed at addressing short-comings in using bridging in virtualised environments
- It is a young project and there is much scope to contribute
 - Extended VLAN support
 - Private VLANs
 - 802.1ad
 - 802.1ah
 - Improved QoS
 - Add a default queue to the Port table
 - Add enqueue to the FLOOD and NORMAL ports
 - or use NOX (a different controller)
 - High-Level Management