Network Bandwidth Isolation

Xen Sumit Tokyo 2008

Simon Horman <simon@valinux.co.jp>
Hiroya Inakoshi <inakoshi.hiroya@jp.fujitsu.com>

20th-21st November 2008

This work was partly funded by Ministry of Economy, Trade and Industry (METI) of Japan as the Secure Platform project of Association of Super-Advanced Electronics Technologies (ASET).

Outline

• Part I: Overview

• Part II: Identifying Packets

• Part III: Packet Scheduling

Part I

Overview

Motivation

Fairness

- Wish to ensure that each domain received a fair share of network-related resources
 - As defined by the administrator
- Guard against malicious domains
- Guard against domains that have been infected by a virus

Network-Related Resources

- NIC Bandwidth
- Dom0 CPU
- Dom0 Kernel memory

Network-Related Resources

- NIC Bandwidth
 - How fast packets are being transmitted and received by domUs
- Dom0 CPU
 - How fast packets are being transmitted and received by domUs
- Dom0 Kernel memory
 - How many packets are held in the kernel

Packet Scheduling

• Prioritise packets based on domain

• Drop packets if a domain has too many enqueued

Packet Scheduling

- Prioritise packets based on domain
 - NIC Bandwidth
 - Dom0 CPU
- Drop packets if a domain has too many enqueued
 - Dom0 Kernel memory usage

Netback/Netfront Flow Control

End-to-end flow control from netfront until a packet is transmitted by the destination interface is important as it allows packet scheduling to control network-related resource usage.

- dom0 CPU
- dom0 Kernel memory

Part II

Identifying Packets

DomU Transmit: Identifying Packets

- Match the interface from which packets enter xenbr0
- Identifies the source-domU

DomU Transmit: iptables Rules

Mark the packets according to which interface they arrive on

Part III

Packet Scheduling

Packet Scheduling

- Filter
 - assign to a class
- Prioritise
 - based on class assignment
 - may selective delay packets
- Queue
 - for transmission after filtering or prioritisation
- Drop
 - if a queue becomes full

Netback/Netfront Flow Control

DomU Transmit

$$p \leq n$$

where: p: transmit packets enqueued in dom0 for vifN.M

n: netback ring-buffer slots (default = 256)

- Delaying packets in dom0 should be sufficient
- Dropping packets may actually be harmful
 - Holding onto packets actually slows down domU

DomU Transmit: Packet Scheduling Hierarchy

DomU Transmit: HTB Rules: Leaf Classes

Leaf Classes

• One per domain + default

DomU Transmit: Filter

Filter based on the fwmark set by iptables

- handle N is the fwmark match
- flowid X:Y is the queue to assign the packet to match

Part IV

Extra Material

HTB Performance

Tuning HZ

Tuning Burst: Dom0 Processes

500Mbit Class B 100Mbit Class B Total

Tuning Burst: DomU Processes

500Mbit Class B 100Mbit Class A 100Mbit Class B Total

